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ABSTRACT

After a brief overview of the work on causality in
the area of qualitative reasoning, this paper pro-
poses an algorithm for causally ordering the vari-
ables appearing in a set of equations. The main
originality of the algorithm compared to existing
work is that it copes with systems that have sev-
eral operating modes and performs the causal or-
dering in an incremental way. The algorithm
is implemented in the software module CAUSAL-
ITO written in C.

1. INTRODUCTION

The work presented in this paper results from a
problem encountered in the framework of the Es-
prit project TIGER. This project aimed at in-
tegrating several artificial intelligence technolo-
gies, including qualitative model-based reasoning
to perform condition monitoring of gas turbines.
It resulted in the TIGER system which has been
installed on several gas turbines in the UK to date
(1996) [13]. The TIGER diagnostic mechanism
uses three independent systems, among which the
qualitative model-based diagnosis system Ca~En
[2]. Ca~En includes a general diagnosis engine
plus a knowledge representation language associ-
ated with a simulation engine [13, 1].

A Ca~En model 1s defined as a set of causal rela-
tions (influences) among the variables of the phys-
ical system and a set of equations (analytical ex-
pressions) relating the variables. These consti-
tute the so called causal level and global constraint
level. Both levels cope with imprecise knowledge
by allowing parameter interval values. The causal
level is supported by a directed graph in which the
nodes stand for the variables and the edges stand
for the influences. Influences describe dynamic re-
lationships ; they are implemented by a predicate
I+(X,Y,e,K,Td, Tr) (or I-) in which Y is the vari-
able influenced by X, ¢ i1s an activation condition,

K is the gain of the influence (ratio between the
variation amplitude of Y with respect to that of
X), Td is the delay (time taken by Y to react to
X) and T'r is the response time (time needed by
Y to reach a new equilibrium value after being
perturbed by X). The Ca~En prediction (simula-
tion) and diagnosis procedures are both driven by
the causal level, the global level being only used
in the prediction procedure [1]. In consequence,
whereas the global level may only represent part
of the knowledge available about a physical sys-
tem, all the knowledge must be represented at the
causal level.

The Ca~En model of a physical device can be
built from deep knowledge (analytical expres-
sions) and/or empirical knowledge (influence re-
lationships known by the experts).

Implementing deep knowledge at the causal level
requires to explicitly set the causal structure un-
derlying the set of equations. We are hence faced
with the problem of causal ordering, and we
want to automate this step. Our objective differs
however from other works in that the causal or-
der is not only to be used for explanatory purposes
(when used by the diagnosis mechanism) but also
for prediction purposes (when used by the simu-
lation mechanism).

2. CAUSAL ORDERING

The problem of causal ordering has been ap-
proached by several authors in the qualitative rea-
soning context, generally for providing an expla-
nation of why a device produces the behaviour it
does. Since the behaviour is generally obtained
from an equational model, the problem can be set
as the one of deriving a causal pattern from a set
of equations which may be algebraic or differential
ones. The causal pattern obviously depends on
the context in which the device operates, which is
determined by the set of exogenous variables, i.e.



variables which are controlled by factors external
to the system currently modelled. We can refer in
particular to the following approaches:

e the mythical causality approach of de Kleer
and Brown [3]

e the causal ordering of Twasaki and Simon [5,

6, 7]

e the QUAF! causal graph generation algo-
rithm of Rose and Kramer [10]

e the bond graphs approach[8, 11]

The QUAF and the bond graphs approaches only
provide partial solutions. The QUAF method
requires the user to change algebraic equations
into differential equations from the knowledge of
the temporal scales of the different mechanisms,
meaning that the problem is really solved by hand.
The bond graphs approach defines a preferred
causality for every component from which it builds
up the whole causal pattern. Unfortunately, in-
consistencies may occur at some points and the
algorithm must backtrack.

The solution proposed by Iwasaki and Simon de-
rive the causal ordering from a structural analysis
of the equations. Their approach does not require
equation solving. It differs from the de Kleer and
Brown (1986) process for finding mythical causal-
ity which performs a runtime computation for de-
termining the propagation paths followed by dis-
turbances given as input signals. We agree with
Iwasaki and Simon that finding a causal structure
can be viewed as a more general problem than
determining the effect of a disturbance for which
standard qualitative techniques can be used once
the causal structure is obtained. This being so,
both approaches are consistent and they provide
the same causal order when no feedback loops are
involved. When a feedback loop is present, then
mythical causality determines all the interpreta-
tions, each one specifying a possible causal order
around the loop. Unlikely, Iwasaki and Simon do
not specify any causal ordering, such an order be-
ing pointless for them.

3. THE REQUIREMENTS OF OUR PROB-
LEM

We do agree with the main ideas of Iwasaki and
Simon causal ordering. However, their approach
1s still limited for our problem.

First, it is not convenient for prediction problems.
Indeed when the causal structure is to be used
for predicting the values of unmeasured variables
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by propagating through the values of measured
ones, 1t is impossible to abstract existing feedback
loops. Any variable must be reachable from ex-
ogenous variables. The prediction engine needs a
full causal structure and requires to determine at
least one possible interpretation around the loops.
Notice that all possible interpretations around the
loops are equivalent for prediction purposes.

Iwasaki and Simon’s approach just provides no
causal order in these cases. In the TIGER project,
the APU fuel system (cf. section 6.) was a good
example of a strongly connected system in which
all the 18 unknown variables of the assembled
model are in a loop.

Second, we want to address an important prob-
lem. It is the very common problem of systems
which have several operating modes. In hy-
draulic circuits for example, switch valves are very
common. These valves are either fully open or
fully closed, adding or retracting new branches to
the circuit. The equational models of such sys-
tems have conditions associated to some of the
equations. A brute force approach would consist
in generating a new causal structure for every dif-
ferent mode. This can be significantly optimised
by performing an wncremental generation of the
causal structure.

Before presenting our algorithm, we recall the
main lines of Iwasaki and Simon approach on
which we have built our own contribution.

4. THE CAUSAIL ORDERING OF IWASAKI
AND SIMON

4.1 Static systems

Static systems are composed of algebraic equa-
tions relating the values of the variables at any-
time.

Self-containment. A (qualitative) static system
of n algebraic equations with n variables is self-
contained if every subset of k (k < n) equations
contains at least k variables.

Minimal Complete Subsystem (MCS). Given a
self-contained system S, a proper subset s of S
that is also self-contained and does not contain a
proper self-contained subset is called a MCS.

Causal Ordering. Given a self-contained system
S, let Sy be the union of all its MCS, called of
zero order. Since Sy is self-contained, the vari-
ables in Sy, can be determined by solving the
equations in Sy. Substitute these values for all the
occurrences of these variables in the equations of
(S—Sp). A new self-contained system is obtained,
called the derived structure of first order. Let S
be the union of all its MCS, called of first order.



The above procedure is repeated until the lastly
derived self-contained system contains no proper
subsystem that is self-contained.

For each equation e; of S, let V; denote the set of
variables appearing in e; and W; the subset of V;
containing the variables belonging to the MCS of
highest order in V;. Then, the variables in W; are
defined as causally dependent on the variables in
)

Determining causal ordering is therefore equiva-
lent to computing the MCSs of the successive de-
rived structures.

Remark. A loop corresponds to the existence
of an MCS with more than one variable, all the
variables of such MCS being mutually dependent.
One can then notice that, as mentioned before,
this causal ordering does not provide a causal or-
der for the variables in a loop.

Implementation within a graph theoretic frame-
work. The problem of computing the causal or-
dering is closely related to the one of finding a
perfect matching in a bipartite graph as shown by
[9]. This result is presented below.

Given a self-contained system S = (E, X) formed
by a set of n equations F in n variables X and the
context of the system given by the set of exoge-
nous variables?. The problem of causal ordering
is the one of determining the dependency paths
among variables which would indicate in which
order every equation should be used to solve suc-
cessively for the n unknown variables. The system
being self-contained, this comes back to the prob-
lem of associating one variable to one equation.

If we define G = (F'U X, A) as the labelled bipar-
tite graph associated to S in which every equa-
tion of S is represented by a node labelled by
¢; (equation-node), each variable of S by a node
labelled by x; (variable-node) and there exists a
non-oriented edge a(j,7) between the node z; and
the node ¢; if x; appears in e;, then the problem
of associating one variable to one equation is the
well-known problem of finding a perfect matching
in the bipartite graph G = (FU X, A).

Proposition 1. [9] The bipartite graph G = (F U
X, A) associated with a self-contained system has
a perfect matching.

Once a perfect matching C has been found, every
equation e; can be interpreted as a mechanism
which determines the value of its matched variable
z; as a function of the other variables appearing
in the equation. x; is hence viewed as causally
dependent from the other variables in the equation
;. A causal graph, G. = (X, A.), can be derived
from G in two steps :

2Every exogenous variable is accounted for by an ez-
ogenous equation which artificially sets the value of the
exogenous variable to a constant value parameter

1. Derive the oriented graph G/ = (F U X, A")
by orienting the edges of A from z; towards
e; if a(i,j) € C and from e; towards x; if

a(i, j) ¢ C ;

2. Deduce G = (X, A¢) from ' = (FUX, A
by fusioning in a local manner the matched
variable and equation nodes. (. hence pro-
vides a full causal ordering among the vari-
ables, exhibiting one possible interpretation
around the loops.

Let us now relate G. to Iwasaki and Simon’s
causal ordering. G by itself does not show the
MCSs explicitly.

Proposition 2. [9] Every MCS corresponds to a
maximal bipartite elementary subgraph in G =

(EU X, A).

Proposition 3. [9] Every maximal bipartite ele-
mentary subgraph of order more than 2 in G =
(E U X, A), corresponds to a strongly connected
component (SCC') in the directed bipartite graph
G'=(EFUX,A.

Proposition 4. There is a one to one correspon-
dence between the SCCs in ¢/ and the SCCs in
Ge.

The proof is trivial from the construction of G’
and (.. The above propositions show that the
SCCs in (G, correspond to the M(CSs of S. Con-
sequently, if a graph G'¢ 1s built from G by aggre-
gating all the nodes within the SCCs of G, into a
single node, then G.o provides the causal ordering
proposed by Iwasaki and Simon [5]. The variables
belonging to the same SCC' in G, i.e. the same
MCS of S, are all mutually dependent. Contrary
to the causal ordering directly obtained from G,
this causal ordering does not assign any ordering
among them.

Erample. Consider the system composed by
a voltage generator Uy feeding two resistors
branches (this example will also be used in sec-
tion 5.2) presented in figure 1. The equations are:
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Figure 1: Example: three resistors with a switch



Assuming that the switch is in position 1, the cor-
responding equations are the following:

U = Uo (el)
U = U1 +Us (e2)
U1 = Rz[ (63)
U2 = Rgf (64)

The different graphs corresponding to the system
are in figure 2.
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Figure 2: Example: graphs

4.2 Dynamic systems

Dynamic systems are modelled by differential
equations. It 1s commonly accepted that they
have a natural causal interpretation. Any differ-
ential equation can be brought back to a set of
differential equations in canonical form, i.e. there
is only one derivative in every equation and the
derivative is the only term appearing on the left
hand side: X;/dt = f(X1,..., X, ..., Xy, t). Ev-
ery differential equation in canonical form can
then be interpreted as a mechanism which deter-
mines the value of a derivative as a function of the
variables which appearing in the right-hand side
of the equation.

Self-containment. A (qualitative) dynamic sys-
tem of n first order differential equations (in
canonical form) is said to be self-contained if ev-
ery subset of k& (k < n) equations contains at least
the first derivatives of k variables.

Causal ordering. Twasaki and Simon [5, 6, 7] dis-
tinguish two kinds of causal relations in dynamic
systems: differential causality and integral causal-
ity. Integral causality means that each variable
depends on its derivative (Vt, X (¢) = X(t — dt) +
dX/dt), and differential causality notifies the de-
pendence of each derivative in relation to all the
variables occurring in its expression.

The causal ordering of a self-contained dynamic
system in canonical form is given by, for each
equation:

Causal Order of

Iwasaki & Simon

1. the integral link between the derivative and
its primitive

2. the differential links between the derivative
and the other variables of the equation.

4.8 Mized systems

Mixed structures are composed of differential and
algebraic equations.

Mized system instanciation. Since Vi, X(t) =
X(t — dt) + dX/dt, Twasaki and Simon [5, 6, 7]
consider X (¢t — dt) as an exogenous variable for
the system instanciation at time f. Hence, the
causal ordering of a mixed system M at time ¢
is obtained from a new system Inst(M) includ-
ing all the equations of M and, for each deriva-
tive dX;/dt occurring in M | one constant equation
X; = c to represent the fact that X; is exogenous
in Inst(M).

Self-containment. A mixed system is self-contai-

ned 1iff:

1. M contains 0 or more first-order differential
equations, the rest being algebraic equations.

2. Inst(M) verifies the self-containment crite-
ria of static self-contained systems when the
variables and their derivative are treated as
distinct variables.

Causal ordering. Causal ordering of a mixed sys-
tem 1is determined by:

1. The application of static systems ordering
rules to Inst(M).

2. The addition of the integral links between
each derivative and its primitive.

5. (CAUSAL ORDERING FOR CA~EN

Our problem is to generate automatically the
causal structure of the Ca~En models when the
original knowledge is in the form of an equational
model. This section presents the algorithm that
we have devised and implemented in the software
module Causalito. Let us recall the requirements
of our problem:

1. The causal structure must account for all the
causal links (influences) acting within the sys-
tem, in particular feedback phenomena must
be explicitly accounted for, i.e. the causal
structure must provide one possible interpre-
tation around the loop(s). This is because
Ca~En needs a full causal structure in its pre-
diction mechanism which is based on propa-
gating the variables values through the causal



graph (any internal variable must be reach-
able from the exogenous variables).

2. The causal structure must be generated for
systems which have several operating modes
as well.

5.1 One single operating mode systems
5.1.1 Static systems

Let us consider the self-contained system S =
(E, X)) and the bipartite graph G = (F U X, A)
as defined in 4.1. Then we have the following in-
teresting results which help understand the causal
ordering problem:

Proposition 5. The bipartite graph G = (F U
X, A) contains no bipartite elementary subgraph
(S contains no MCS with multiple variables) iff
G = (FU X, A) has a unique perfect matching.

PROOF. This result is easily proved by reason-
ing about the occurrence matrix M of S. The
rows of M correspond to the equations E and the
columns to the variables X and the entry m,; is
non null iff the variable x; occurs in the equation
e;. This matrix 1s also the non null submatrix
of the adjacency matrix of . Hence every m;;,
corresponds to an edge of A. A perfect match-
ing associates one variable to one equation and
it can therefore be represented on the occurrence
matrix by the selection of n entries with the prop-
erty that there 1s one and only one selected entry
per row and one and only one selected entry per
column. It is a well-known result that the adja-
cency matrix of a graph with no cycles can be put
in diagonal form after a permutation of its rows
and its columns. Therefore there is a unique per-
fect matching which corresponds to the selection
of the entries on the diagonal. |

Proposition 6. If the bipartite graph G = (F U
X, A) has a unique perfect matching C, the de-
rived causal graph G. is acyclic and so is the
causal dependence path linking all the variables.

The proof is trivial from the construction of G,
from . In other words, only the M(CSs with
multiple variables give rise to several possible per-
fect matchings, each of which provides a possible
causal order around the loops.

Corollary. Consider that all the possible perfect
matchings of the bipartite graph G = (F'U X, A)
are C1,...,C}, and that they include a common
submatching, then the common submatching in-
duces the same acyclic causal subgraph in any
Gei,t = 1,...,n. The non common parts of
the perfect matchings C1, ..., C),, induce strongly
connected subgraphs in G.q, ..., Gy, respectively
(they hence correspond to MCSs with multiple
variables).

PROOF. Corollary comes directly from proposi-
tion 5. |

Remark. Given that the causal ordering of
Iwasaki and Simon is given by G, which is ob-
tained from G, by aggregating all the nodes corre-
sponding to SCCs, it comes from the above propo-
sitions and corollary that their causal ordering is
unique and independent of the perfect matching
it has been derived from.

In order to fulfil requirement 1 and given that
all possible interpretations around the loops are
equivalent for prediction purposes, our problem
reduces to the one of finding one (any) perfect
matching in G and deriving the causal graph G..
In other word, we do not need to exhibit the
MCSs. In terms of mechanisms and influences,
the perfect matching associates one variable to
one equation, defining which variable is to be de-
termined from which equation. Every equation e;
can then be interpreted as a mechanism which de-
termines the value of its matched variable z; as a
function of the other variables appearing in the
equation. In other words, the matched variable x;
is viewed as causally dependent from (influenced
by) the other variables in the equation e;. The
algorithm that we have devised, Causalito, pro-
vides:

e The assignment variable-equation (x;,¢;) for
i=1,...,n (perfect matching problem);

e The list of influences acting within the system
(with associated delay times and activation
conditions if any);

e The correspondence between equations and
influences.

For determining the perfect matching, we use the
Ford and Fulkerson [4] algorithm which finds a
maximal flow through a weighted oriented graph.

5.1.1 Dynamic systems

Ca~En accepts equivalently differential equations
or recurrent equations, so does the Causalito al-
gorithm. The system must be self-contained and
as in 4.2, it must be put in canonical form?

Canonical recurrent equations. If some variable
appears p times in the equation with different tem-
poral labels, 1t is considered as p different vari-

ables. Following the intuition, the causal links

3Similarly to continuous time differential equations, a
recurrent equation of any order can be put in the form of
a set of first order recurrent equations, i.e. there is only
one variable with temporal label (t+1), the other variables
having a temporal label ¢, and this variable is the only term
appearing on the left hand side of the equation.



are generated consistently with the chronologi-
cal order imposed by the temporal labels. They
are hence drawn from the variables appearing on
the right hand side of the equation to the vari-
able on the left hand side, which appears as the
one whose value is determined by this mechanism.
The causal links are then labelled by a delay (de-
lay of the corresponding Ca~En influence) equal
to the difference of the temporal labels of the vari-
ables that they relate.

Canonical differential equations. As opposed to
Iwasaki and Simon approach, we do not distin-
guish a variable from its derivative. The differen-
tial causal links are drawn from the variables on
the right hand side of the equation towards the
primitive variable of the derivative of the equa-
tion, which appears as the one whose value is de-
termined by this mechanism. When the primitive
variable of the derivative appears explicitly in the
equation, this results in a causal link which loops
around the primitive variable. These loop links
are then labelled by a delay time equal to 1.

5.1.1 Mized systems

Given a mixed structure in which both the dy-
namic part and the static part are self-contained,
the causal ordering is simply obtained by applying
the causal ordering for dynamic structures to the
dynamic part and the one for static structures to
the static part. From the implementation point of
view, this is obtained by applying the whole model
structure to the Ford and Fulkerson algorithm,
after having forced the entries corresponding the
matching for the dynamic part (the variable to be
matched to a differential equation is the primitive
variable of the derivative of the equation ; idem
for recurrent equations). Exogenous variables are
accounted for in the static part by as many exoge-
nous equations. The model structure is given by
the occurrence matrix M of the system in which
some non null entries can be marqued as explained
below:

1 if variable joccurs in equation ¢

x if variable joccurs in equation ¢ and
must be forced

0 otherwise

mi; =

The algorithm returns the table after having mod-
ified some of the entries according to the perfect
matching found:

by the perfect matching

x if variable j has been forced to
equation ¢

2 if variable j simply occurs in
equation ¢

0 otherwise

mi; =

1 if variable j is matched to equation ¢

From the returned table M’ Causalito produces
the causal structure and precises which influences
(causal links) correspond to every equation. De-
lays are generated as explained in 5.1.1.

5.2  Multiple operating mode systems

Most of the real systems have several operating
modes for they include automatic switches and/or
processes that have a different behaviour depend-
ing on the operating range. Surprisingly, the prob-
lem of causal ordering for such problems has never
been discussed so far in the literature. The equa-
tional model of such systems is formed of a set of
equations among which some have associated con-
ditions defining their operation range. The global
causal order associated to such systems hence in-
cludes some causal links with associated condi-
tions as well.

This section proposes a formalisation of the prob-
lem of generating the causal structure associated
to multiple mode systems and provides an algo-
rithm for generating the causal structure in an in-
cremental way, taking sequentially into account
the different circuit configurations in a local man-
ner. This allows us to optimise the procedure in
the sense that, for every operating mode, only the
minimal causal sub-graph is re-evaluated. This is
obviously much more efficient than a brute force
approach which would consist of generating a new
graph for every different mode.

Consistent operating mode. An operating mode
is said to be consistent iff it is logically and phys-
ically consistent, 1.e. the set of logical conditions
defining the operating mode are consistent and
they are simultaneously realisable (from a physi-
cal point of view).

Self-containment. A multiple-mode mixed S sys-
tem 1s self-contained iff its static part and its dy-
namic part are self-contained in every consistent
operating mode.

Incremental causal ordering. Our algorithm takes
as input the equational model structure of S plus
a condition vector:

e The model structure is given by the occur-
rence matrix M as in 5.1.1.

e The condition vector V has as many compo-
nents as equations:

t if equation ¢ has no condition
v; = C' if equation ¢ is submitted to
condition ('

Working hypothesis. The conditions defining the
different modes of some physical component (rep-
resented by one or several equations) must define



a partition of the parameter subspace spanned by
the parameters appearing in these conditions, i.e.
they must be mutually exclusive and cover the
whole subspace. In logical terms, (C; A C;) is
false for any ¢ and j, and \/?:1 C; is true. If the
above hypothesis would not hold, this would indi-
cate that the whole model has a domain validity
restricted to a subspace.

The number of different operating modes for the
system can be obtained by multiplying the num-
ber of different modes for every physical compo-
nent. However, one must be careful that among
these modes, some may not be consistent. We
define a consistent operating mode as a configu-
ration.

The general scheme of the algorithm is as follows:
beginning with an initial configuration C,pz0 =
(C1C5 ... Cy) and following the method presented
in 5.1.1. Causalito generates a first causal graph
G in the form of Ca~En influences plus their as-
sociated activation conditions (the influences cor-
responding to equations submitted to some condi-
tion C' have the activation condition C'). Causalito
then switches to another condition and determines
the mintmal causal sub-graph which needs to be re-
evaluated and the new sub-graph to be added. Gy
is updated and so on until all the configurations
have been considered.

Algorithm. Assume that the system S in a given
configuration — assumed to be the initial config-
uration without loss of generality — consists of
n equations Fy and n variables Vy and consider
a configuration change, defined by the fact that a
set on conditions change truth values. Let’s define
the "macro-conditions” C' and C* as the union of
the conditions which change truth value from 1
to 0, and from 0 to 1 respectively. Note that this
comes back to replacing the equations conditioned
by conditions in C' by conditions in C*, and that,
since the system is self-contained, the occurrence
matrix variables/equations is always a square ma-
trix.

Consider the notations given in table 1.

Define V. = VN Ve and G, as the subgraph ob-
tained from G¢g by deleting the edges entering the
variable-nodes of Vi and the nodes corresponding
to (Ve — V%) ; ie. Gy is the subgraph which
remains after discarding EF-. Then we have the
following result:

Proposition 7.  'The maximal subgraph of G¢q
that needs to be re-evaluated is the subgraph
spanned by (I'(V.)U VL), where T'(V))) is the set
of successors of the variable-nodes of V/ in G/,
and the sub-graph to be added is obtained from a
perfect matching between (VL UT(V,.)U Vy) and
(Ec« U Er), where Er is the subset of equations
in E¢ which include variables of (T'(V/) U V).

Ey set of equations in the initial

configuration ;
o set of variables occurring in Fjy ;
C and C* macro-condition determining the
next configuration change ;
Co perfect matching for the initial
configuration (condition C' true) ;
Geo causal structure of S in the initial
configuration (derived from C0) ;
Eeo set of equations conditioned by C
Ve set of variables matched to E¢
by CO ;
FEey set of equations conditioned by
c*
Ve set of variables occurring in Foy ;
Va set of variables occurring in F¢.,
and not occurring in Vp ;
Ec set of equations neither submitted
to C' nor to C* ;
Ve set of variables occurring in Eo ;
E set of equations in the next
configuration (E = E¢ + Ec.) ;
V set of variables occurring in E.

Table 1: Notations

PROOF. This result is easily proved by reason-
ing about the occurrence matrix M of S in the
initial configuration. A perfect matching, in par-
ticular Cy, associates one variable to one equation
and it can therefore be represented on the occur-
rence matrix by the selection of n entries with the
property that there is one and only one selected
entry per row and one and only one selected en-
try per column. Then, every non selected entry
mij corresponds to an edge of the causal graph
G o drawn from variable x; towards the variable
matched to the equation e;. ]

We change C' into C*. The new perfect match-
ing C' can be decomposed in a first submatching
Sub-C41 common to Cy and a second submatch-
ing Sub-C'5 which is new. We want to determine
the minimal set of variables and equations to be
rematched (the ones which must be considered for
finding Sub-Cs), guarantying at the same time
that a perfect matching exists among them.

When changing configuration C' into C*, the rows
of M corresponding to the equations in E¢ are
replaced by the rows corresponding to the equa-
tions in Foy. Let’s reason with respect to the
variables; knowing that a dual reasoning could be
done with respect to the equations. In the new
occurrence matrix, the entries which remain se-
lected (matches) correspond to the variables in
the set (V — (VL UVy)), where Vi is the set of
variables newly introduced by Fco..

Therefore, the variables which are not matched
are (VL U Vw).



Matching V. As the variables in Vi only occur
in Fecy, they can only be matched to equations
in Fc.. Hence these matches do not require to
modify any of the existing matches.

Matching V/.. The variables of V. may occur in
equations of E¢ (and eventually in equations of
Ecy). If z; € VZ but does not appear in E¢ i.e.
it only appears in E¢,, then we are in the same
case as for variables in V. If z; € V/ and occurs
in the equation ¢; € E¢ , then the entry m;; is
candidate to be selected for matching z;. But e;
already has a matched variable zj, given by the
selected entry in the row 7. Hence x; would in its
turn need to be matched elsewhere. The entries
in column k, mskq, s;, are other candidates for
matching z;. But the corresponding equations e,
already have matched variables, and so on until
no other candidates are found. In G¢o, o 1s the
successor of z; by the edge corresponding to m;;
and the edges corresponding to the my bring to
the successors of xj, etc. This is illustrated in the

figure 3.

€5 T —

X Non null entry
Selected entry

Figure 3: Matching

Therefore, the maximal sub-graph of G¢g which
needs to be re-evaluated is given by (I'V. U
V/) and the new sub-matching Sub-C5 must be
searched for between the variables in (VLU (V4)U
Vi) and the equations in (F¢y) U Er), where Ep

is the subset of equations of E¢ which include
variables of (I'(V4) U V).

The algorithm is as follows:

1 - Choose the initial configuration vector.
Find a perfect matching Cy for S in this con-
figuration. Derive the corresponding causal
graph GCO and put the delay labels to the
causal links.

2 - Change configuration by taking the nega-
tion of one condition C'.

21-IF (VAUVe=0)vVLi=0

THEN Label the arcs entering the variables
of V¢ with macro condition €' and find a per-
fect matching between (V. U Vy) and Ec..

ELSE a - Find in G, the set T(V.) of all
the variables which are successors of variables
of V/ and label the arcs entering the variables
of (I'(VL) U Vi) with condition C.

b - Determine ET, the set of equations
of which contain variables of (T'(V/) U V).

¢ - Find a perfect matching between
the variables of (V4 U (VL) U Vi and the
equations of (F¢s U Er.

2.2 - Update G¢g by adding the arcs corre-
sponding to the perfect matching found and
label them with macro condition C*. Goto
2.

The final labelled causal graph is a super-graph
which includes all the causal graphs of S in the

different configurations®.

Ezrample. Consider the very simple illustrative
multiple-mode static system presented in section
4.1 and assume that the switch is connected to R»
if a given condition C' is true and to R; otherwise.
The equations are the following:

(el) U = Uo

(62) U = le if =C
(63) U = U, +U, if C
(64) U1 = Rz[ if C
(65) U2 = R3[ if C

Name the variables x1 = U, 2 = Uy, 3 = Uy
and x4 = I. Let’s define C' as the initial configu-
ration. Then the occurrence matrix concerns e,
e3, €4, e5 and x1, Ta, T3, x4. A possible — this
system includes a cycle — perfect matching Cj is
indicated by the selected entries and provides the
following causal structure Gy (see section 4.1).

_U U, Uy 1
e | ® I8 —C> U,
X X
- @ C C
€4 ® X
C
€5 L X ®_ U1 4—[

Let’s now change C' into C* = =(C'. We have F¢ =
{es,ea est, Vo = {zg, 23,24}, Ecx = {ea}, Vou =
{l‘l,l‘4}, EC = {61}, VC = {l‘l}, E = {elan}a
V = {&1,24} and V. = {#4}. We are hence in

4This can be directly used by Ca~En



the THEN case of 2.1. Therefore, we must find a
perfect matching between {x4} and {es}, which is
trivial.

The final causal graph is:

Although this is not really computationally signif-
icant in the case of this simple system, the benefit
of the incremental approach appears clearly as the
new perfect matching had to be found between
one variable and one equation instead of between
two variables and two equations.

Note that the resulting causal structure would
have been exactly the same if we had defined by
the initial configuration =C' and that the same
branch of the algorithm would have been followed.
The next section presents the results obtained

with CAUSALITO on the APU application.

6. APPLICATION OF CAUSALITO TO
THE APU GAS TURBINE FUEL SYS-
TEM

6.1 Presentation of the APU fuel system

The APU 1s a little turbine used as an auxiliary
power supply in aircrafts. The one that we con-
sidered was designed by the company Micro Turbo
for Dassault Aviation and used in Rafale fighter.
Like all turbine systems, it is made of an air sup-
ply, a compressor, a combustion chamber, a tur-
bine and an exhaust pipe. It is used on the ground
or during flight time to produce electric or pneu-
matic energy. Our study focused on the APU fuel
system which feeds and regulates the APU, pro-
viding the fuel from the aeroplane tanks to the
injectors with the right pressure and flow, depend-
ing on the shaft speed and the aeroplane operating
mode.

The APU fuel system is made of the following
components (see figure 4) :

o an inlet fuel filter eliminates impurities (dust,
ice-crystals, etc.) ;

e a fuel shut-off valve opens or closes the fuel
system ;

e a check-valve enables to fill the circuit with
fuel at the start ; item a pump provides de-
sired flow and pressure;

e a second filter protects the fuel control valve
e a fuel control valve regulates the fuel flow as

a function of the APU operating mode and of
the running speed set point ;

e a differential pressure control valve maintains
constant pressure between the fuel control
valve input and output ;

e two injector rings spray fuel in the combus-

tion chamber ;

e a dividing valve feeds the second injector ring
under some pressure condition ;

e a drainage system empties the fuel out of the
system when stopping.

The APU fuel system global model includes 22
equations for 18 internal variables and 4 exoge-
nous ones. The variables appear in the figure
4. Three pressure conditions define the operating
modes of this system:

(Cl) PQ—P3<0
(CZ) Pcp_P2>0
(C3) P —Peaa<t

Three component models have been chosen as ex-
amples. For more information the reader can refer
to [12].

First anlet fuel filter
Equation (1) : @ = k1.51+/Pgav — P1

where ()1 1s the fuel flow through the filter, S; is
the pipe section, Py., and P, are pressures and k;
1s an intrinsic parameter.

Pump

Equation (3) : Qp = [ksN(1 — ka(N — k5))] —
(ke P3-3(1 — k7)) if (C1)

Equation (3) @, = 0 if (=C'1)

where @), is a flow, IV is the rotating speed, ks, k4,
ks, kg and k7 are intrinsic parameters and Ps is a
pressure. The condition (C1)(P2— Ps < 0) is true

when the pump is functioning and false when the
circuit is being filled (the check valve is opened).

Dividing valve
Equation (14) : Q2 = 0 if (C3)
Equation (14”) : Py — Pc2 = kyy if (-C3)

where ()2 1s the flow through the dividing valve,
and P.; and P.; are the pressure in the first and
second injector ring. The condition Cs is true
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Figure 4: APU fuel system

when P.; — P.s > 7 and it means that only the
first injector ring is functioning (7 is the bound-
ary pressure value for the opening of the dividing
valve). When Cj is false, the two injectors rings
are functioning simultaneously.

Although none of the 8 possible operating modes
are logically inconsistent, an analysis of the phys-
ical system shows that —=C; implies C's. We then
have only six consistent operating modes (config-
urations).

6.2 CAUSALITO results

Input. The input of the CAUSALITO module is
a file containing the list of the variables, the list
of equations, the occurrence matriz and the con-
ditions associated with the equations. The model
of the APU fuel system is hence given as follows
(all the equations are not represented):

P1 P2 P3 Pcp dp Pcl Pc2 Q1 Q3 Qb
Qpil Qinj Qrl Qr2 Qp Qc eps S’
Pgav N ISV Pc

(1) 1000000100000000001000 ¢
(3) 0010000000000010000100 C1
(3’) 0000000000000010000000 C1-
(5) 0011000010000000000000 ¢
(11) 0101000000100000000000 C2
(11’) 0000000000100000000000 C2-
(12) 0000010000001000000001 t
(14) 0000000000000100000000 C3
(14’) 0000011000000000000000 C3-
(22) 0000000000000000000001 t

We can easily identify the equations (1), (3), (3°),
(14) and (14°) as described before.

QOutput. The output of the CAUSALITO mod-
ule is the following ("apu’ is the name of the file
containing the model):

Reading file apu: 22 variables,

26 equations, (4 exogenous equations are
added)

3 conditions, 8 operating modes.
Processing perfect matching for each

configuration:

C1 C2 C3... done.
-C1 C2 C3... done.
-C1 -C2 C3... done.
C1 -C2 C3... done.
C1 -C2 -C3... done.
-C1 -C2 -C3... done.
-C1 C2 -C3... done.
Ci1 C2 -C3... done.

Generating causal influences:

(partial results)

Equation (1): Q1 Pgav --> P1

Equation (3): P3 N --> Qp if C1 true
Equation (37):

Equation (5): Pcp Q3 —--> P3

Equation (11): P2 Pcp—->Qpil if C2 true
Equation (11’):

Equation (12): Qril Pc --> Pcl

Equation (14):
Equation (14’):
Equation (22)
Generating causal graph:

Pcl--> Pc2 if C3 false

The causal graph is presented in figure 5.

7. CONCLUSION

This paper presents the algorithm that has been
developed for generating the causal structure of
a Ca~En model from the available knowledge in
form of a set of equations. The main originality of
our algorithm compared to existing work is that
it copes with systems that have several operating
modes. To do so, it performs the generation of
the causal graph in an incremental way
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Figure 5: APU causal graph

The benefits of the incremental approach are
clearly shown by the presented example. Indeed,
if we consider that at each step corresponding
to a configuration change the computational ef-
fort is proportional to the dimension of the per-
fect matching to be found, we successively eval-
uate gains of 12.5% (dimension 14 instead of 16)
, 93.7% (dimension 1 instead of 16), 18.7% (di-
mension 13 instead of 16), 6.25% (dimension 15
instead of 16) and 31.25% (dimension 5 instead
of 16). This indicates an average gain of 32.5%,
which is significantly interesting.

However, there are still open questions that we
are currently investigating. Is there an impact of
the order in which the configurations of the sys-
tem are considered on the resulting causal struc-
ture 7 Which specific order would then result in
a minimal causal structure (in terms of the num-
ber of causal links)? Moreover, we perceive that
there might be some conditions about the connex-
ity of the system and/or the dependency proper-
ties of the conditions defining the different config-
urations under which it would not be necessary to
go through all the configurations to obtain the full
global causal structure. The work is hence going
on.
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